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Abstract. In this paper we present two new results. The first concerns the proper identification of the critical
Richardson number Ri(cr) above which there is no longer turbulent mixing. Thus far, all studies have assumed
that:

Ri(cr) = Ri`(cr) = 1/4. (1)

However, since Ri`(cr) determines the upper limit of a laminar regime (superscript `), it has little relevance to
stars where the problem is not to determine the end point of a laminar regime but the endpoint of turbulence.
We show that the latter is characterized by Rit(cr), where t stands for turbulence, and has a value four times
larger than (1):

Ri(cr) = Rit(cr) ≈ 4Ri`(cr) ≈ 1. (2)

We also show that use of (2) instead of (1) changes the conclusions of recent studies. Inclusion of radiative losses
(characterized by the Peclet number Pe) which weaken stable stratification and help turbulence, further changes
(2) to (r stands for radiative):

Ri(cr) = Rir(cr) ∼ (1 + Pe)Pe−1Rit(cr) (3)

which, for Pe < 1, allows turbulence to survive far longer than (2). Finally, turbulent convection generates gravity
waves that propagate into the radiative region and act as an additional source of energy. This further changes
Eq. (3) to (gw stands for gravity waves):

Ri(cr) = Rigw(cr) = Rir(1 + ηgw) (4)

where ηgw > 1. In conclusion, the successive inclusion of relevant physical processes leads to a chain of increasing
values of Ri(cr):

Ri(cr) = Ri`(cr)→ Rit(cr)→ Rir(cr)→ Rigw(cr). (5)

The second result concerns the dependence of the diffusivity D on Ω. We show that the commonly used expression

Dχ−1 ∼ (Ω/N)2 (6)

is not correct for the regime Pe < 1 that characterizes a stably stratified regime. The proper Ω-dependence is:

Dχ−1 ∼ (Ω/N)4. (7)
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1. The problem

The determination of turbulent diffusivities for a sta-
bly stratified, radiative regime in the presence of sources
like shear (differential rotation, meridional currents),
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encompasses several aspects that need to be analyzed.
First, since a diffusivity D is of the form:

D ≈ wΛ (1a)

where w is an rms velocity and Λ is a mixing length,
one needs to specify two independent variables, w and Λ.
Using Kolmogorov law, K ∼ (εΛ)2/3, where K is the



1120 V. M. Canuto: Critical Richardson numbers and gravity waves

turbulent kinetic energy and ε is the rate of dissipation
of K, Eq. (1a) can be written as:

D ≈ K2ε−1 (1b)

which is physically much clearer than (1a). In fact, K
has its maximum at the largest scales whereas ε (being
a dissipation) peaks at the smallest scales. The specifica-
tion of K and ε is therefore equivalent to specifying both
large and small scales. Turbulence modeling provides the
two dynamic equations satisfied by Kand ε (Canuto 1998;
Kupka 2001).

The second problem is that a large variety of inde-
pendent data from laboratory to large eddy simulations
(Webster 1964; Istweire & Helland 1989; Schumann &
Gerz 1995; Wang et al. 1996; Kosovic & Curry 2000;
Strang & Fernando 2001) have shown that stratification
has different effects on heat and momentum transport but
Eq. (1b) is unable to account for that fact. On the other
hand, turbulence models yield the following result:

Dα = 2SαK2ε−1 (1c)

where the Sα (α = m,h, momentum and heat) are dimen-
sionless structure functions that are different from mo-
mentum and heat. The Sα are functions of:

Sα = Sα(Pe, Ri) (1d)

where Pe is the Peclet number that characterizes radiative
losses (χ in cm2 s−1 is the radiative diffusivity):

Pe =
4π2

125
K2

εχ
(1e)

Ri is the Richardson number:

Ri = N2Σ−2 (2a)

characterizing the ratio between sinks (stable stratifica-
tion N2 and sources (shear instabilities, Σ2). Specifically,
Σ is the mean rate of strain (ū is the mean velocity field)

Σ2 = 2ΣijΣij , 2Σij = ūi,j + ūj,i (2b)

and N is the Brunt-Vaisala frequency:

N2 = gα

[
∂T

∂z
−
(
∂T

∂z

)
ad

]
= gH−1

p (∇ad −∇) > 0. (2c)

Third, there must exist a critical value Ri(cr) of the
Richardson number at which turbulent mixing ceases since
stable stratification has become too strong. Operationally,
one defines Rit(cr) as the value at which the turbulent ki-
netic energy vanishes:

K
[
Rit(cr)

]
= 0 (2d)

and Eq. (1c) implies that the diffusivities also vanish
at Rit(cr). Given the above procedure and a turbulence
model that provides the functions:

K, ε, Sα (2e)

the value of Rit(cr) is given by solving (2d) and need not
be imposed. When no turbulence model is available and
the diffusivities are constructed using heuristic arguments,
the lack of a dynamic equation for K deprives such models
of Eq. (2d) and Rit(cr) must be guessed, a procedure that
has been used thus far, as we discuss next.

2. The critical Richardson number

Lacking a turbulence model, in all astrophysical literature
thus far (Zahn 1974; Pinsonneault et al. 1989; Meader
1995; Meader & Meynet 1996; Garcia-Lopez & Spruit
1991; Talon & Zahn 1997; Schatzman et al. 2000), it has
been customary to identify:

Ri(cr) = Ri`(cr) (3a)

where

Ri`(cr) = 1/4. (3b)

Equation (3b) was derived by Miles (1961) and Howard
(1961) using linear stability analysis and represents the
value at which a laminar flow (thus the superscript `) be-
comes unstable. In what follows, several arguments are
presented to show that, given the specific task of identify-
ing when, in a stably stratified region of a star, turbulent
mixing ceases to exist, Eqs. (3a), (3b) are not the correct
answer.

First, Eq. (3b) is the result of a “road from laminarity”,
an approach that can only tell us when a linear regime
breaks down and non-linearities becom important. When
that occurs, one first enters a weakly non-linear regime
and then finally in a turbulent regime where the non-
linearities dominate. We refer the reader to an illustra-
tive depiction of these successive processes (Woods 1969)
which highlights the different physical regimes of laminar,
weakly non-linear and strongly non-linear regimes. Given
a stable laminar sheet of thickness h, Kelvin-Helmholtz in-
stabilities gradually erode and entrain fluid parcels above
and below h. The process leads to an incrase of h which
ceases when the thickness has become about four times the
original value h. Woods (1969) concluded that “since the
final thickness is nearly four times the original value,
the final Richardson number is also four times the value
prior to the instability”. The turbulent Richardson num-
ber Rit is thus computed to be:

Rit(cr) ≈ 4Ri`(cr) ≈ 1. (3c)

Equation (3c) has also been derived using other argu-
ments. Once the regime described by (3b) has been
crossed, non-linearities become important and one must
carry out a stability analysis including them. Abarbanel
et al. (1984) proved that in such a case the sufficient and
necessary condition for instability is:

Ri ≤ Rit ≈ 1 (3d)

which agrees with the heuristic argument leading to (3c).
A more physical argument relies on energy considera-

tions. A turbulent state can be maintained only as long
as the sources outweigh the sinks. Using the equation for
the turbulent kinetic energy (Canuto 1998), this criterion
becomes:

Rf < 1 (4a)

where Rf is the “flux Richardson number” defined as (see
Eqs. (9b)–(9d)):

Rf =
heat flux

momentum flux
=
Dh

Dm
Ri < 1. (4b)
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Thus, Eq. (4a) becomes:

Ri < Rit(cr) ≡ Dm

Dh
=
Sm

Sh
· (4c)

Martin (1985) showed that the computed oceanic upper
mixed layer (which is strongly stable and stirred by shear)
could match observations only if (3d) was satisfied. Large
eddy simulation of a stable planetary boundary layer by
Kosovic & Curry (2000) also conclude that mixing exists
up to Rit ≈ 1. A number of other cases leading to (3d)
are discussed in Strang & Fernando (2001).

From the turbulence modeling viewpoint, turbulence
models (Canuto 1998) provide the dependence of the tur-
bulent kinetic energy K on Ri. Since the stronger the de-
gree of stability, the harder it is for turbulence to survive,
K is a decreasing function of Ri and at some Rit(cr),
Eq. (2d) is satisfied and the value of Rit(cr) so identified.
The solution of Eq. (2d) was obtained in (Canuto 1998,
Fig. 6a) and the result agrees with (3c):

Rit(cr) ≈ 1. (4d)

In conclusion, Ri`(cr) and Ri`(cr) represent two differ-
ent physical situations. In laboratory experiments one fol-
lows the development of an instability and witnesses the
transition from a laminar to a weakly non-linear state,
a bottom-up approach that confirms Ri`(cr) as the tran-
sition value. However, in stars one cannot follow such a
development and one must therefore adopt a conceptually
different approach, a top-down approach. One is presented
with a situation in which there is turbulent mixing and
the relevant question then changes to: what is maximum
value of Ri for which such mixing can be sustained? Since
turbulent mixing is due to strong non-linearities, the an-
swer is Rit(cr) ≈ 4Ri`(cr). Use of Ri`(cr) to characterize
the boundary between turbulent mixing and no mixing is
incorrect since Ri`(cr) refers to a physical situation quite
different from the one most astrophysical studies intend
to describe.

In conclusion, one should forgo the bottom-up ap-
proach leading to Ri`(cr) and adopt the top-down ap-
proach that leads to Rit(cr).

3. Two consequences

At first sight, the change from 1/4 to 1 may seem marginal
but it is not so, as we now discuss. Garcia-Lopez & Spruit
(1991) showed that for gravity waves to be a source of mix-
ing compatible with the data on Li7 depletion, their result
had to be boosted by an arbitrary factor of ≈15 which
meant that gravity waves mixing is inefficient. However,
had the authors used Rit(cr) instead of Ri`(cr), the boost-
ing factor would have been only ≈3, which is well within
the uncertainties of the problem. Their conclusion would
have been that gravity waves are an efficient source of mix-
ing. More recently, Schatzman et al. (2000, SZM) studied
whether mixing may be due to shear instabilities. They
concluded that for that to occur (their Eq. (8)):

ξ > 40/Ri(cr), ξ ≡ (χ/ν)Ri−1 (5a)

where ν and χ are the molecular viscosity and radiative
conductivity. SZM used:

Ri(cr) = Ri`(cr) = 1/4 (5b)

and showed (their Fig. 2) that ξ almost never satisfies
(5a). Had SZM used:

Ri(cr) = Rit(cr) = 1 (5c)

the first relation in (5a) would have been satisfied and
SZM would have concluded that shear instabilities do set
in. Whether shear instabilities are sufficiently strong to
explain the diffusiviy required to explain the depletion
of Li7 is a different matter since the quantification of
how much mixing is produced by an instability requires
a model much more complex than linear analysis, that is,
a turbulence model.

4. Peclet number dependence

As we stressed earlier, the solution of the Reynolds stress
equations provided by a turbulence models (Canuto 1998)
yields not only the form (1c) but the structure functions
Sα as well. Equation (4c) can therefore be written as
(r stands for radiative losses):

Ri < Rir(cr) (6a)

Rir(cr) =
Sm(Ri, Pe)
Sh(Ri, Pe)

· (6b)

The Pe-dependence of the functions Sα is such that:

Pe > 1:Sm(Ri, Pe) ≈ Sm(Ri), Sh(Ri, Pe) ≈ Sh(Ri).
(7a)

Both Sm,h are independent of Pe. In the opposite case:

Pe < 1:Sm(Ri, Pe)≈Sm(Ri), Sh(Ri, Pe)≈PeSh(Ri)
(7b)

Sm(Ri, Pe) is still Pe-independent while Sh(Ri, Pe) de-
pends linearly on Pe. Combining (7a,b) into a single ex-
pression and substituting into (6b), we obtain:

Rir(cr) =
1 + Pe

Pe

Sm(Ri)
Sh(Ri)

=
1 + Pe

Pe
Rit(cr) (8a)

which, in the limit of small Pe, yields:

Rir(cr) ≈ Pe−1Rit(cr). (8b)

Thus, Rir(cr) can be much larger than Rit(cr). Using (8a),
we rewrite (6a) as:

Pe < 1 Ri <
1
Pe

Sm(Ri)
Sh(Ri)

· (8c)
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5. Gravity waves

In principle, once we add to the previous formalism the dy-
namic equations for K and ε, the model is complete. The
results can be found in Canuto (1998). However, such an
approach, while complete from the point of view of turbu-
lence modeling, does not take into account the presence of
gravity waves which are generated in the convective zone
and propagate into the radiative zone with a flux Π(gw).
Such waves act a source of turbulence (in addition to that
of shear e.g., differential rotation and meridional currents).
In the solar case, Kumar et al. (1999) have computed the
flux of gravity waves to be:

Π(gw) = 0.1%(L/M)sun = 2× 10−3 cm2 s−3. (9a)

The question then arises: how can one include Π into
a turbulence model? Here, we suggest a first approach.
Consider the stationary limit of the time dependent
equation for the turbulent kinetic energy (Canuto 1998,
Eq. (25a)):

Production = Dissipation (9b)

where:

Production = −τijΣij + gαwθ + Π. (9c)

The first term represents the source due to shear (e.g.,
differential rotation, meridional currents), the second term
is the sink due to stable stratification and the third term
is the contribution of gravity waves. Using the following
forms for the Reynolds stresses τij and the heat flux wθ
(Canuto 1998, Eqs. (39a) and (43a)):

τij = −2DmΣij , wθ = −Dh

[
∂T

∂z
−
(
∂T

∂z

)
ad

]
· (9d)

Equations (9b), (9c) become:

DmΣ2 −DhN
2 + Π = ε (10a)

which can be written as:

ε = (DmΣ2 + Π)(1−Rgw
f ) (10b)

where the gravity wave-dependent flux Richardson num-
ber is defined as:

Rgw
f ≡ Dh

Dm

Ri

1 + Π/DmΣ2
=
Sh

Sm

Ri

1 + Π/DmΣ2
< 1 (10c)

which replaces (4b). Using (6b), we obtain:

Ri < Rigw(cr) (10d)

where:

Rigw(cr) = Rir(cr)(1 + Π/DmΣ2) > Rir(cr). (10e)

Thus, in the presence of gravity waves, Rigw(cr) is larger
than Rir(cr).

6. Ω dependence of the scalar diffusibity

The expression for the scalar turbulent diffusivity D em-
ployed thus far in the literature does not differentiale be-
tween momentum and heat. Its specific form has been
taken to be:

Pe < 1 Dχ−1 ∼ Ω2N−2 (11a)

where and Ω2 stands for Σ2. Equation (11a) has been
widely used (Baglin et al. 1985; Maeder 1995; Maeder &
Meynet 1996; Talon & Zahn 1997; Charbonnel & Talon
1999).

Let us repeat the standard derivation of (11a) keep-
ing the Sα structure functions. Starting with (1c) and us-
ing (1e), one has (a ≡ 125/2π2):

Dαχ
−1 = aPeSα(Ri, Pe). (11b)

For momentum and heat diffusivities, we have:

Dmχ
−1 = aPeSm(Ri, Pe) (11c)

Dhχ
−1 = aPeSh(Ri, Pe). (11d)

Because of (7a), (7b), we can further write for any Pe:

Dmχ
−1 ∼ aPeSm(Ri) (11e)

Dhχ
−1 = aPe2(1 + Pe)−1 Sh(Ri). (11f)

The different Pe-dependence of Dm and Dh is a re-
sult that was first derived by Howells (1960) using
heuristic arguments and later proven rigorously with
RNG (Renormalization group; Canuto & Dubovikov 1996,
Eqs. (C16–18)). Next, we employ (8c) to eliminate Pe and
obtain:

Pe < 1 Dmχ
−1 ∼ S(Ri)(Ω/N)2 (12a)

Dhχ
−1 ∼ S(Ri)(Ω/N)4 (12b)

where the function S(Ri)

S(Ri) ≡ S2
m(Ri)/Sh(Ri) (12c)

is plotted in Fig. 1. When compared with (11a), the new
expressions (12) exhibit several new features:

1) heat and momentum diffusivity are different,
2) only the momentum diffusivity scales like Ω2/N2,
3) heat diffusivity scales like (Ω2/N2)2,
4) the absence of the Sα functions in phenomenologi-

cal models means that they lack the function S(Ri)
which ensures that the diffusivities vanish at some
point (Fig. 1),

5) the value at which Dm,h vanish is represented by the
variable S(Ri), see Fig. 1. The point at which the diffu-
sivities vanish corresponds to the value of Ri at which
the turbulent kinetic energy vanishes.

In summary, the above derivation shows the major dif-
ferences brought about by the structure fonctions Sα
vis à vis the standard model where they are absent.



V. M. Canuto: Critical Richardson numbers and gravity waves 1123

Fig. 1. The function S(Ri) defined in Eq. (12c) is plotted vs.
the Richardson number Ri. As one can observe, turbulence
exists way past the Ri = 1/4 value. It dies only at Ri ∼ 1.

7. Conclusions

Several arguments have been presented to show that in
a stably stratified fluid, shear dominated turbulence per-
sists above the laminar value Ri`(cr) = 1/4. Regrettably,
the lack of a turbulence model has prompted the use of
the laminar value Ri`(cr) in spite of the fact that it does
not represent the physical situation encountered in stellar
interiors.

The bottom-up approach starting from linear stability
and leading to Ri`(cr) = 1/4 must be substituted with a
top-down approach that gives the range of values of Ri for
which turbulent mixing operates. The new Rit(cr) is de-
fined as the value at which turbulence ceases to exist since
the turbulent kinetic energy vanishes. Several independent
arguments are presented to show that:

Rit(cr) ≈ 1 (13a)

a value that would have changed the conclusions of
Schatzman et al. (2000) and considerably strengthen the
conclusions of Garcia-Lopez & Spruit (1991) concerning
gravity waves as a source of mixing.

Radiative losses further increase the critical Rit(cr)
to Rir(cr) which for Pe < 1 is ≈Pe−1 times larger
than (13a). Gravity waves act as a source of mixing lead-
ing to a further boost in the value of Ri(cr). Through the
successive inclusion of physical processes we have shown
the sequence:

Ri`(cr)→ Rit(cr)→ Rir(cr)→ Rigw(cr) (13b)

with

Ri`(cr) < Rit(cr) < Rir(cr) < Rigw(cr). (13c)

In conclusion, the traditional Ri`(cr) = 1/4 must be re-
placed by Rigw(cr).

In many ways, the new formalism resolves the di-
chotomy that has existed thus far between shear-
dominated and gravity wave-dominated scenarios. Both
processes have been integrated into a single formalism.
Numerical results leading to numerical values of the scalar
diffusivity D are presented in an upcoming paper (Canuto
& Minotti 2001).

Acknowledgements. The author would like to thank an anony-
mous referee for inquisitive questions that helped improve the
original manuscript.

References

Abarbanel, H. D., Holm, D. D., Marsden, J. E., & Ratiu, T.
1984, Phys. Rev. Lett., 52, 2352

Baglin, A., Morel, P. J., & Schatzman, E. 1985, A&A, 149, 309
Canuto, V. M. 1998, ApJ, 508, 767
Canuto, V. M., & Dubovikov, M. S. 1996, Phys. Fluids, 8, 571
Canuto, V. M., & Dubovikov, M. S. 1998, ApJ, 493, 834
Canuto, V. M., & Minotti, F. 2001, MNRAS, submitted
Charbonnel, C., & Talon, S. 1999, A&A, 351, 635
Garcia-Lopez, R. J., & Spruit, H. 1991, ApJ, 377, 368
Gerz, T., Schumann, U., & Elgobashi, S. E. 1989, J. Fluid

Mech., 200, 563
Howard, L. N. 1961, J. Fluid Mech., 10, 509
Howells, I. D. 1960, JFM, 9, 104
Itsweire, E. C., & Helland, K. N. 1989, J. Fluid Mech., 207,

419
Kosovic, B., & Curry, J. A. 2000, J. Atmos. Sci., 57, 1052
Kumar, O., Talon, O., & Zahn, J. P. 1999, ApJ, 520, 859
Kupka, F. 2001, ApJ, submitted
Maeder, A. 1995, A&A, 299, 84
Maeder, A., & Meynet, G. 1996, A&A, 313,140
Martin, P. J. 1985, J. Geophys. Res., 90, 903
Miles, J. W. 1961, J. Fluid Mech., 10, 496
Pinsonneault, M. H., Kawaler, S. D., Sofia, S., & Demarque,

P. 1989, ApJ, 338, 424
Schatzman, E., Zahn, J. P., & Morel, P. 2000, A&A, 364, 876
Schumann, U., & Gerz, T. 1995, J. Appl. Met., 34, 33
Strang, E. J., & Fernando, H. J. S. 2001, J. Phys. Oceanogr.,

31, 2026
Talon, S., & Zahn, J. P. 1997, A&A, 317, 749
Wang, D., Large, W. G., & McWilliams, J. C. 1996, J.

Geophys. Res., 101, 3649
Webster, C. A. G. 1969, J. Fluid Mech., 19, 221
Woods, J. D. 1969, Radio Science, 4, 1289
Zahn, J. P. 1974, in Stellar Instability and Evolution, ed. P.

Ledoux, A. Noels, & W. Rodgers (Dordrecht, Reidell), IAU
Symp., 59, 185


